TransformersEntityLinking
Entity linking task
Subclass of Task.
Module: implementation.tasks
Default predictor
This task uses TransformersModel by default with this configuration:
See:
Methods and properties
Main methods and properties
__init__
Arguments:
labels (List[str]): Labels to link.
tokenizer (Optional[Union[str, PreTrainedTokenizer, PreTrainedTokenizerFast]], optional): Tokenizer to use. Defaults to None.
predictor (Predictor[Any, Any], optional): Predictor that will be used in task. If equals to None, default predictor will be used. Defaults to None.
preprocess (Optional[Component], optional): Component executed before predictor. If equals to None, default component will be used. Defaults to None. Default component: EntityLinkingPreprocessor
postprocess (Optional[Component], optional): Component executed after predictor. If equals to None, default component will be used. Defaults to None. Default component: EntityLinkingPostprocessor If default chain is used, EntityLinkingPostprocessor will use provided tokenizer or tokenizer from predictor model.
input_class (Type[Input], optional): Class for input validation. Defaults to EntityLinkingInput.
output_class (Type[Output], optional): Class for output validation. Defaults to EntityLinkingOutput.
name (Optional[str], optional): Name for identification. If equals to None, class name will be used. Defaults to None.
EntityLinkingInput
Subclass of IOModel.
__init__
Arguments:
texts (List[str]): Texts to process.
num_beams (int)
num_return_sequences (int)
EntityLinkingOutput
Subclass of IOModel.
__init__
Arguments:
classification_output (Any)
EntityLinkingPreprocessor
Prepare prompts for model. Subclass of Action. Type of Action[Dict[str, Any], Dict[str, Any]].
execute
Arguments:
input_data (Dict[str, Any]): Expected keys:
"texts" (List[str]): Texts to process;
Returns:
Dict[str, Any]: Expected keys:
"texts" (Any): Prompts;
EntityLinkingPostprocessor
Process model output. Subclass of Action. Type of Action[Dict[str, Any], Dict[str, Any]].
__init__
Arguments:
tokenizer (Union[PreTrainedTokenizer, PreTrainedTokenizerFast])
encoder_decoder (bool): Model configuration parameter.
name (Optional[str], optional): Name for identification. If equals to None, class name will be used. Defaults to None.
execute
Arguments:
input_data (Dict[str, Any]): Expected keys:
"sequences" (Any): Model output;
"sequences_scores" (Optional[Any], optional): Used if num_beams > 1. Defaults to None;
"num_beams" (int);
"texts" (List[str]): Processed prompts;
Returns:
Dict[str, Any]: Expected keys:
"classification_output" (Any): Formatted output;
Last updated