TransformersChat
Basic chat task
Subclass of Task.
Module: implementation.tasks
Default predictor
This task uses TransformersModel by default with this configuration:
TransformersPipeline(
TransformersPipelineConfig(
task="text-generation",
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
kwargs={
"max_new_tokens": 256,
"do_sample": True,
"temperature": 0.3,
"top_k": 50,
"top_p": 0.95,
}
),
input_class=TransformersBasicInput,
output_class=TransformersBasicOutput
)
See:
Methods and properties
Main methods and properties
__init__
Arguments:
predictor (Predictor[Any, Any], optional): Predictor that will be used in task. If equals to None, default predictor will be used. Defaults to None.
messages (Optional[str], optional): Key to use to access memory for messages. If equals to None, a unique key will be generated. Defaults to None.
Note: This parameter will function as expected only when using the default preprocessor and postprocessor.
preprocess (Optional[Component], optional): Component executed before predictor. If equals to None, default component will be used. Defaults to None. Default component: ChatPreprocessor | GetMemory | ChatAddContext | SetMemory | RenameAttribute
postprocess (Optional[Component], optional): Component executed after predictor. If equals to None, default component will be used. Defaults to None. Default component: ChatPostprocessor | GetMemory | ChatUpdateContext | SetMemory
output_class (Type[NEROutputType], optional): Class for output validation. Defaults to ChatOutput.
name (Optional[str], optional): Name for identification. If equals to None, class name will be used. Defaults to None.
ChatPreprocessor
Create message template for input prompt. Subclass of Action. Type of Action[Dict[str, Any], Dict[str, Any]].
execute
Arguments:
input_data (Dict[str, Any]): Expected keys:
"prompt" (str): Input prompt;
Returns:
Dict[str, Any]: Expected keys:
"messages" (Iterable[ChatCompletionMessageParam]): Input messages;
ChatPostprocessor
Process API output. Subclass of Action. Type of Action[Dict[str, Any], Dict[str, Any]].
execute
Arguments:
input_data (Dict[str, Any]): Expected keys:
"output" (List[Dict[str, Any]]): Expected keys:
"generated_text" (str);
Returns:
str: Response message.
Last updated