GLiNER

NER task

This task uses GliNERPredictor by default. For more details, see:

GLiNERPredictor

Subclass of NERTask.

Module: implementation.tasks

Methods and properties

Main methods and properties


__init__

Arguments:

  • predictor (Predictor[Any, Any], optional): Predictor that will be used in task. If equals to None, default GliNERPredictor will be used. Defaults to None.

  • preprocess (Optional[Component], optional): Component executed before predictor. If equals to None, default component will be used. Defaults to None. Default component: GliNERPreprocessor

  • postprocess (Optional[Component], optional): Component executed after predictor. If equals to None, default component will be used. Defaults to None. Default component: GliNERPostprocessor

  • input_class (Type[Input], optional): Class for input validation. Defaults to GliNERInput.

  • output_class (Type[NEROutputType], optional): Class for output validation. Defaults to GliNEROutput.

  • name (Optional[str], optional): Name for identification. If equals to None, class name will be used. Defaults to None.




GliNERInput

Subclass of IOModel.


__init__

Arguments:

  • text (str): Text to process.

  • labels (List[str]): Labels for classification.




GliNEROutput

Subclass of NEROutput. Type of NEROutput[ClassifiedEntity].


__init__

Arguments:




GLiNERPreprocessor

Create prompts with providied text. Subclass of Action. Type of Action[Dict[str, Any], Dict[str, Any]].


__init__

Arguments:

  • sents_batch (int): Chunks size in sentences. Defaults to 10.

  • threshold (float): Minimial score to put entities into the output (used by predictor). Defaults to 0.5.

  • name (Optional[str], optional): Name for identification. If equals to None, class name will be used. Defaults to None.


execute

Arguments:

  • input_data (Dict[str, Any]): Expected keys:

    • "text" (str): Text to process;

Returns:

  • Dict[str, Any]: Expected keys:

    • "texts" (List[str]): Model inputs;

    • "chunks_starts" (List[int]): Chunks start positions. Used by postprocessor;

    • "threshold" (List[int]): Minimial score to put entities into the output;




GLiNERPostprocessor

Format output. Subclass of Action. Type of Action[Dict[str, Any], Dict[str, Any]].


execute

Arguments:

  • input_data (Dict[str, Any]): Expected keys:

    • "output" (List[List[Dict[str, Any]]]): Model output;

    • "text" (str): Processed text;

    • "chunks_starts" (List[int]): Chunks starts;

Returns:

  • Dict[str, Any]: Expected keys:

    • "text" (str): Processed text;

    • "output" (List[ClassifiedEntity]): Classified entities;



Last updated