PDF document processing

This example shows multimodal pipeline (processes visual/structured data and text) that processes PDF document.

Coplete source code for example can be found in programs.multimodal.pdf_document_processing.

Imports that will be used

from typing import Any, Dict, List
import logging
import pathlib
PATH = pathlib.Path(__file__).parent.resolve()

from utca.core import (
    Evaluator,
    ForEach,
    SetMemory, 
    MemorySetInstruction,
    GetMemory, 
    MemoryGetInstruction,
    Log,
    Flush,
    AddData,
    ExecuteFunction,
)
from utca.implementation.datasources.pdf import (
    PDFRead, PDFExtractTexts, PDFExtractImages, PDFFindTables
)
from utca.implementation.tasks import (
    TransformersTextSummarization,
    TransformersDocumentQandA
)

Utilities functions for custom logic

def prepare_text_summarization_input(
    input_data: Dict[str, Any]
) -> List[Dict[str, Any]]:
    chunk_size: int = 2048
    return [
        {
            "inputs": text[j:min(j+chunk_size, len(text))],
            "page": page
        } for page, text in input_data["texts"].items()
        for j in range(0, len(text), chunk_size)
    ]


def prepare_image_classification_input(
    input_data: Dict[str, Any]
) -> List[Dict[str, Any]]:
    return [
        {
            "image": image.convert('RGB'),
            "page": page
        }
        for page, images in input_data["images"].items()
        for image in images
    ]


def crop_tables_from_pages(
    input_data: Dict[str, Any]
) -> List[Dict[str, Any]]:
    return [
        {
            "image": (
                input_data["pdf"][page]
                .crop(table.bbox)
                .to_image(resolution=256)
                .original
            ),
            "page": page
        }
        for page, tables in input_data["tables"].items()
        for table in tables
    ]


def format_results_and_clean_up(input_data: Dict[str, Any]) -> Dict[str, Any]:
    info: Dict[str, Any] = {
        i: {
            "context": "",
            "tables": [],
            "images": []
        } for i in input_data["pages"] 
    }
    for s in input_data["summaries"]:
        info[s["page"]]["context"] += s["summary_text"] + "\n"

    for t in input_data["tables_description"]:
        info[t["page"]]["tables"].append(
            t["output"][0]["answer"] if t["output"] else "Undefined table"
        )
        t["image"].close()

    for i in input_data["images_description"]:
        info[i["page"]]["images"].append(
            i["output"][0]["answer"] if i["output"] else "Undefined image"
        )
        i["image"].close()
    return info

Pipelines

ExecutionSchema for processing visual data:

process_visual_data = (
    AddData({"question": "What is described here?"})
    | TransformersDocumentQandA()
).set_name("Visual data processing")

The TransformersDocumentQandA task is utilized for processing visual data because it is effective at handling the structural data typically found in documents. About default parameters, see:

The set_name method is utilized to enhance the clarity and structure of step-by-step execution logging.

ExecutionSchema for processing images:

image_processing = (
    PDFExtractImages().use(
        get_key="pdf",
        set_key="images"
    )
    | ExecuteFunction(prepare_image_classification_input).use(
        set_key="images"
    )
    | Log(logging.INFO, message="Images:")
    | ForEach(
        process_visual_data, 
        get_key="images",
        set_key="images_description"
    )
    | Flush(["images"])
    | Log(logging.INFO, message="Images descriptions:")
    | SetMemory(
        set_key="images_description", 
        get_key="images_description",
        memory_instruction=MemorySetInstruction.MOVE
    )
).set_name("Image processing")

This pipeline extracts images from pages, processes them, and saves their descriptions in memory for future formatting. The process_visual_data pipeline is executed for each found image.

The set_name method is utilized to enhance the clarity and structure of step-by-step execution logging.

ExecutionSchema for processing tables:

table_processing = (
    PDFFindTables().use(
        get_key="pdf",
        set_key="tables"
    )
    | ExecuteFunction(crop_tables_from_pages).use(
        set_key="tables"
    )
    | Log(logging.INFO, message="Tables:")
    | ForEach(
        process_visual_data, 
        get_key="tables",
        set_key="tables_description"
    )
    | Flush(["tables"])
    | Log(logging.INFO, message="Tables descriptions:")
    | SetMemory(
        set_key="tables_description", 
        get_key="tables_description",
        memory_instruction=MemorySetInstruction.MOVE
    ) 
).set_name("Table processing")

Similarly to image_processing pipeline, this pipeline extracts tables from pages, processes them, and saves their descriptions in memory for future formatting. The process_visual_data pipeline is executed for each found table.

The set_name method is utilized to enhance the clarity and structure of step-by-step execution logging.

ExecutionSchema for text summarization:

text_summarization = (
    PDFExtractTexts(tables=False).use(
        get_key="pdf",
        set_key="texts"
    )
    | ExecuteFunction(
        prepare_text_summarization_input
    ).use(set_key="texts")
    | Log(logging.INFO, message="Texts:")
    | TransformersTextSummarization().use(
        get_key="texts",
        set_key="summaries"
    )
    | Flush(["texts"])
    | Log(logging.INFO, message="Summaries:")
    | SetMemory(
        set_key="summaries", 
        get_key="summaries",
        memory_instruction=MemorySetInstruction.MOVE
    ) 
).set_name("Text summarization")

This pipeline extracts texts from pages, processes them with TransformersTextSummarizationTask, and saves text summaries in memory for future formatting.

The set_name method is utilized to enhance the clarity and structure of step-by-step execution logging.

ExecutionSchema for main pipeline:

pipeline = (
    SetMemory(set_key="pages", get_key="pages")
    | PDFRead().use(
        set_key="pdf"
    )
    | Log(logging.INFO, message="Read:")
    | image_processing
    | table_processing
    | text_summarization
    | Flush()
    | GetMemory(
        ["pages", "tables_description", "images_description", "summaries"], 
        memory_instruction=MemoryGetInstruction.POP
    )
    | Log(logging.INFO, message="Raw result:")
    | ExecuteFunction(
        format_results_and_clean_up, 
        replace=ReplacingScope.GLOBAL
    ).use(set_key="results")
    | Log(logging.INFO, message="Result:", open="="*40, close="="*40)
).set_name("Main pipeline")

Main pipeline that combines described above.

Note that even though nested pipelines are added sequentially one after another, they are added to the main pipeline rather than to each other, as the ExecutionSchema of the main pipeline was already initialized.

Run program

We wrapped pipeline in Evaluator and provided logging_level to log messages:

res = Evaluator(
    pipeline, logging.INFO
).run({
    "path_to_file": f"{PATH}/pfizer-report.pdf",
    "pages": [10, 11, 12]
})

Inputs

  • "path_to_file": path that directs to a file that should be in programs.multimodal.pdf_document_processing.

  • "pages": pages that will be used.

Results

The results should include formatted output containing descriptions for images and tables, as well as text summaries for each page.

Last updated